

Flow-R Fast and versatile software for run-out assessment of gravitational hazards

What is Flow-R?

Flow-R is software for rapid, reliable, and userfriendly modeling of natural hazard propagation. Flow-R allows rapid assessment of the propagation area based on several published empirical run-out models at local and regional scales. It is optimized for regional susceptibility mapping of gravitational hazards, such as:

- Debris flows
- Rockfalls
- Rock avalanches
- Shallow landslides
- Snow avalanches

Flow-R supports susceptibility mapping to depict areas prone to natural hazards. These maps are an essential tool for land-use planners to identify quickly and efficiently settlements, infrastructure, and communication networks potentially threatened by natural hazards.

More online

> Rockfall reach susceptibility map

1. Probabilistic approach

Flow-R uses a probabilistic approach to model the propagation of gravitational hazards from user-defined source areas. It results in the total perimeter encompassing all possible propagations, which leads to susceptibility maps that are similar to the reach probability used in hazard mapping

2. Wide range of algorithms

Flow-R includes a wide range of algorithms for the lateral spreading of a mass movement coupled with several simple friction models that control the run-out distance of the flow.

> Debris-flow propagation areas resulting from different spreading and friction parameters.

3. Realistic propagations

Up to date with recent academic research, Flow-R has demonstrated the capability to model reliable and realistic propagations for different gravitational hazards at various scales.

4. Effect of protection forest & mitigation measures

The protective effect of forests or other mitigation measures can be assessed using a spatially-variable travel angle.

A Rockfalls: effect of protection forest.

5. Flexible input data

The choice of inputs and algorithms is open to the user, making Flow-R adaptable to various applications and available datasets. Required input data include a Digital Elevation Model and a raster file with source areas prepared in any GIS software. Flow-R supports all common types of raster files.

6. Data export

The generated output files are saved as raster files or shapefiles for further treatment with any standard GIS tool.

ớ Flow-R 2.0.0	>	×
File Help		
Project files		
Digital Elevation Model		
Source areas		
	> V 0 Use source values	
Lateral spreading		
Direction algorithm	Holmgren modified	\sim
	dh = x =	
Persistence algorithm	Weights	~
	weights = default \checkmark	
Friction model		
Friction algorithm	Travel angle	\sim
	angle =	
Velocity limitation	velocity < m/s	
Outputs		
Main results directory		
Susceptibility maximu	Im Total extent Velocity	
Susceptibility sum	Number of propagations Energy	
Propagation polygons	s (large output files)	
Run name		
Name of the run	Add to queu	e
4		

Technical specifications

> Rock avalanche reach susceptibility map

Technical specifications

A. Versatile software for run-out assessment of gravitational hazards at regional scale

- Debris flows
- Rockfalls
- Shallow landslides
- Snow avalanches
- Rock avalanches

B. Wide range of implemented algorithms

- Control of the lateral spreading of a mass movement with various direction algorithms
- Assessment of the runout distance using simple frictional models
- Persistence functions reproducing the inertia of a mass flow
- An algorithm for rock avalanches allows ascending the opposite side of the slope

C. Optimized algorithms for large study areas

- Computationally efficient: about 45× faster than previous versions (Flow-R 1)
- Multi-threaded processing
- Efficient memory handling that facilitates working with unrestricted spatial extents

D. Flexible input data

- Flow-R requires only a Digital Elevation Model and user-defined source areas as input files
- Flow-R supports all common raster file types
- Automatic regridding of the source areas in case of differences in raster cell size
- Simple data importation and model setup
- Optional raster file providing the travel angles to account for protection forest and other mitigation measures.

Technical specifications

E. Created output files

- Results are exported as raster files in GeoTIFF format or as polygons in shapefile
- Optional compression of output raster files
- Output data include:
 - Susceptibility maximum: The maximum of susceptibility values from all propagations passing through a given cell
 - Susceptibility sum: The sum of susceptibility values from all propagations passing through a given cell
 - Total extent: The overall extent of all propagations
 - Number of propagations: The total number of propagations passing through a given cell
 - Velocity : The maximum of the velocity values from all propagations passing through a given cell
 - Energy: The maximum of the energy values from all propagations passing through a given cell for a unitary mass of 1 kg
 - Propagation polygons: Polygon of the propagation extent of each source cell

F. Graphical user interface

- Easy configuration of model runs
- All parameters in a single window

G. Multiple runs

- A queue system allows multiple consecutive runs
- An unlimited number of runs in the queue for the Flow-R Pro version (limited to three runs in the Lite and Trial versions)
- Possible to abort, pause or resume runs

H. Complete documentation

- Help file
- Scientific article with the complete description of the Flow-R model: Horton P., Jaboyedoff M., et al.: *Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale.* NHESS 13, 869-885, 2013

Flow-R version 2 available now

Trial Buy

Contact

Terranum

Rue de l'Industrie 35b 1030 Bussigny, Switzerland Dr Pascal Horton Hydrology, Meteorology, Software Development, Flow-R, AtmoSwing

Dr Clément Michoud Natural Hazards, Geology, Environment, Remote Sensing, GIS

Dr Thierry Oppikofer Geology, Natural Hazards, 3D Measurements, GIS, Coltop3D, Riskko

info@terranum.ch

